

TMS320F28335, 28334, 28332 Flash APIs

For creating custom programming solutions for the
TMS320F28335, 28334, 28332 DSPs.

This document applies to the following APIs:

TMS320F28335 Flash API V2.10 (Flash28335_API_V210.lib)
TMS320F28334 Flash API V2.10 (Flash28334_API_V210.lib)
TMS320F28332 Flash API V2.10 (Flash28332_API_V210.lib)

Release version: 2008.08.14

Release date: August 14, 2008

TMS320F2833x Flash API
August 14, 2008

2 of 41

Flash API Disclaimer

This documentation applies to the following Flash Application Program Interface (Flash API) libraries:

� Flash28335_API_V210.lib
� Flash28334_API_V210.lib
� Flash28332_API_V210.lib

Texas Instruments Inc. (TI) reserves the right to update or change any material included with this
release. This includes:

� The API functional behavior based on continued TMS320F28335, 28334, 28332 testing.

� Improvements in algorithm performance and functionality.

It is the user’s responsibility to check for future updates to these APIs and to use the latest version
available for their TMS320F28335, 28334, 28332 silicon.

Should functional changes occur to the APIs, it is the user’s responsibility to update any application
that uses the API (programmers, embedded software, etc) for proper long-term operation of the flash.

Updates to the API will be posted on the Texas Instruments Inc website (www.ti.com) and can also be
obtained by contacting a local TI representative or the TI Product Information Center.

In this document, the terms F2833x, and TMS320F2833x are used to refer to all flash devices within
the family.

TMS320F2833x Flash API
July 9, 2008

3 of 41

Contents:

1. Release Notes...4
2. API Revision vs. Silicon Revision..5
3. Introduction: Flash API Programming Fundamentals ...6
4. Example Programs..8
5. Flash API Checklist ...9
6. Step 1: Modify Flash2833x_API_Config.h ..10
7. Step 2: Include Flash2833x_API_Library.h...11
8. Step 3: Include the proper Flash API library ...11
9. Step 4: Initialize PLL Control Register (PLLCR) ...11
10. Step 5: Check PLL Status for Limp Mode Operation ..12
11. Step 6: Copy the Flash API functions to Internal SARAM ..12
12. Step 7: Initialize Flash_CPUScaleFactor ..15
13. Step 8: Initialize the Callback Function Pointer...16
14. Step 9: Optional: Disable Global Interrupts...17
15. Step 10: Rules for Callback, Interrupts, and Watchdog ..19
16. Step 11: Optional: Frequency and PLL configuration toggle test ...20
17. Step 12: Optional: Unlock the Code Security Module (CSM) ...21
18. Step 13: API Reference...21

18.1. Data Type Conventions ..21
18.2. API Function Naming Conventions and Function list ...21
18.3. Flash status structure (FLASH_ST)..22
18.4. API Version (in float) Function ..23
18.5. API Version (in Hex) Function...24
18.6. ToggleTest Function ...25
18.7. Erase Function..27
18.8. Program Function ...30
18.9. Verify Function ..33
18.10. Depletion Recovery Function..35
18.11. Step 14: Return Status Values..36

19. Code Size Requirements ..38
20. F28335, F28334, F28332 API Revision Information...41
21. Files included with the API ..41

TMS320F2833x Flash API
August 14, 2008

4 of 41

1. Release Notes

These release notes apply to all of the APIs.

a) The Flash APIs have all been compiled with the large memory model (-ml) enabled. The small memory

model is not supported. Any application that uses the Flash API should also be compiled for the large
memory model. For information on the large memory model refer to the TMS320C28x Optimizing C/C++
Compiler User’s Guide (literature #SPRU514).

b) The F2833x Flash APIs have been compiled with the “--float_support=fpu32” floating point option enabled.
Only object files that are compiled as such can be linked to the APIs.

c) Some traditional programming utilities have separate operations for “Clear” and “Erase”. These two
operations have been combined into one operation referred to only as “Erase”.

d) Note: The CSM will be permanently locked if the CSM password locations are loaded with all 0x0000

and the device is secured. During the combined “Erase” function, a sector clear is immediately
followed by an erase operation without resetting the device. This will help avoid permanently
locking the CSM. Do not program the CSM passwords with all 0x0000.

e) The intended use of the Flash API software is for development of custom flash programming methods. The
Flash API is used with ROM boot loading options such as parallel load 16/8, SCI, eCAN, I2C and SPI
modes, to get the flash programming code into the DSP.

f) For programming the device through the JTAG port, use the SDFlash programmer from TI 3

rd
 Party vendor

Spectrum Digital Inc. (www.spectrumdigital.com) or the Code Composer Studio
TM

 (CCS) Plug-in. Check
the TI website, and CCS update advisor for updates to the plug-in to incorporate this version of the API.

Revision history for each of the API’s can be found in the following sections:

F28335/F28334/F28332: Section 20

TMS320F2833x Flash API
July 9, 2008

5 of 41

2. API Revision vs. Silicon Revision

The silicon revision can be determined by the lot trace code marked on the top of the package. Refer to the device
specific errata for information on how to determine your device’s silicon revision from the device symbolization. In
addition, the silicon revision can be read from the REVID register located at address 0x883 as shown in the tables
below.

Revision information for the F28335, 28334, 28332 API

Second Letter In
Prefix of Trace Lot

Code

REVID
(Addr 0x883)

Obsolete - Flash APIs
These APIs are Obsolete and

No Longer Recommended

Recommended
Flash API

Blank = 0x0000 None V2.10 or Later

A >= 0x0001 V1.01, V2.00 V2.10 or Later

Note:
For future silicon revisions, TI anticipates that no functional changes will be required to these
APIs (and hence no changes should be required to your DSP software).

Should API changes occur that affect the programming of the flash, it is the user’s
responsibility to update any application that uses the API (programmers, embedded software,
etc) to insure proper long-term operation of the flash. TI will test these APIs on future silicon
revisions as soon as possible when such devices become available. Updates that only add
features are not required.

TMS320F2833x Flash API
August 14, 2008

6 of 41

3. Introduction: Flash API Programming Fundamentals

The Flash Application Program Interface (Flash API) consists of well-documented functions that the client
application calls to perform flash specific operations. The flash array and One Time Programmable (OTP)
block on the device are managed via CPU execution of algorithms in the Flash API library. Texas
Instruments Inc (TI) provides API functions to erase, program and verify the flash array as briefly described
here:

Erase:
Erase operates on the flash array only. The One Time Programmable (OTP) block cannot be erased once it has
been programmed. The Erase function is used to set the flash array contents to all 1’s (0xFFFF). The erase
operation includes the following steps:

� Pre-compact all sectors. This step is to make sure no bits are in an over-erased

or “depleted” state before attempting the sector erase. Depletion can occur as a
result of stopping the erase function before its post-condition or compaction step
can complete. Even with this step, halting the erase function before it completes
is not recommended.

� Pre-condition or “clear” the sector to be erased. This step programs all of the bits

in the sector to 0x0000 to allow for an even erase across the sector.

� Erase the sector. This step removes charge from the bits in the sector until all of

the bits within the sector are erased.

� Post-condition or compact the sector that was erased. This step makes sure no

bits are left in an over-erased (or depleted) state.

The smallest amount of memory that can be erased at a time is a single sector. Some traditional algorithms,
such as those for the 240x family, require that the flash be pre-conditioned or “cleared” before it is erased. The
Flash API erase function includes the flash pre-conditioning and a separate “clear” step is not required.

The flash array and OTP block are in an erased state (all 0xFFFF) when the device is shipped from the factory.

Program:
The program function operates on both the flash array and the OTP block. This function is used to put
application code and data into the flash array or OTP. The program function can only change bits from a 1 to a
0. Bits cannot be moved from a 0 back to a 1 by the programming function. For this reason, flash is typically in
an erased state (all 0xFFFF) before calling the programming function. The programming function operates on a
single 16-bit word at a time.

To protect the flash or OTP and allow for user flexibility, the program operation will not attempt to program
any bit that has previously been programmed. For example, a flash or OTP location can be programmed with
0xFFFE and later the same location can be programmed with 0xFFFC without going through an erase cycle.
During the second programming call, the program operation will detect that bit 0 was already programmed
and will only program bit 1.

Verify:
The erase and program functions perform verification with voltage margin as they execute. The verify function
provides a second check via a CPU read that can be run to verify the flash contents against the reference
value. The verify function operates on both the flash array and OTP blocks.

To integrate one of the Flash APIs into your application you will need to follow the steps described within this
document. The checklist provided in section 5 gives an overview of the required steps and can be used to
guide you through the process. While integrating the API, keep the following Do’s and Don’ts in mind:

User's

Application

Flash API

Flash Algos

OTP/Flash

Array Control

Flash/OTP

Memory

Zero-Waitstate SARAM

TMS320F2833x Flash API
July 9, 2008

7 of 41

API Do’s:

� Execute the Flash API code from zero-wait state internal SARAM memory.

� Configure the API for the correct CPU frequency of operation.

� Follow the Flash API checklist in section 5 to integrate the API into an application.

� Initialize the PLL control register (PLLCR) and wait for the PLL to lock before calling an API function.

� Initialize the API callback function pointer (Flash_CallbackPtr). If the callback function is not going to be

used then it is best to explicitly set the function pointer to NULL as described in section 13. Failure to
initialize the callback function pointer can cause the code to branch to an undefined location.

� Carefully review the API restrictions for the callback function, interrupts, and watchdog described in

section 15.

API Don’ts:

� Don’t execute the Flash APIs from the flash or OTP. If the APIs are stored in flash or OTP memory,

they must first be copied to internal SARAM before they are executed.

� Don’t execute any interrupt service routines (ISRs) that can occur during an erase, program or
depletion recovery API function from the flash or OTP memory blocks. Until the API function completes
and exits the flash and OTP are not available for program execution or data storage.

� Don’t execute the API callback function from flash or OTP. When the callback function is invoked by

the API during the erase, program or depletion recovery routine the flash and OTP are not available for
program execution or data storage. Only after the API function completes and exits will the flash and
OTP be available.

� Don’t stop the erase, program or depletion recovery functions while they are executing (for example,

don’t stop the debugger within API code, don’t reset the part, etc).

� Do not execute code or fetch data from the flash array or OTP while the flash and/or OTP is being
erased, programmed or during depletion recovery.

TMS320F2833x Flash API
August 14, 2008

8 of 41

4. Example Programs

An example program is included with each API. There is one example per device. In a typical installation, the
examples are located in the following directories:

� F28335: C:\tidcs\c28\Flash28_API\Flash28335_API_V210\example
� F28334: C:\tidcs\c28\Flash28_API\Flash28334_API_V210\example
� F28332: C:\tidcs\c28\Flash28_API\Flash28332_API_V210\example

These examples demonstrate the following:

� Required software setup before calling the API (setting the PLL, checking for limp mode etc.)
� How to copy the API from flash into SARAM for execution.
� How to call the API functions.

The steps taken by the example are outlined in the API checklist in section 5 and described in detail in the
remainder of this document. The example program is setup to be stored in the flash and the appropriate code
and constants are copied to SARAM for execution. You must first build the application and then program it into
the flash using an available programmer such as SDFlash available from Spectrum Digital Inc.
(www.spectrumdigital.com) or the Code Composer Plug-in. Additional programmers from 3

rd
 parties may be

available, please contact TI for details.

To step through the code, use Code Composer Studio to load the symbols from the .out file (File->Load
Symbols).

TMS320F2833x Flash API
July 9, 2008

9 of 41

5. Flash API Checklist

Integration of the Flash APIs into user software requires that the system designer implement operations to
satisfy several key requirements. The following checklist gives an overview of the steps required to use the
API. These steps are further discussed in detail in the reference section indicated. This checklist applies to all
of the F2833x Flash APIs.

Before using the API, do the following:

 Step Description Reference

 1 Modify Flash2833x_API_Config.h for your target operating conditions. Section 6

 2 Include Flash2833x_API_Library.h in your source code. Section 7

 3 Add the proper Flash API library to your project.
When using the Flash API, build your code with the large memory model.
The API Library is built in 28x Object code (OBJMODE = 1, AMODE = 1)

Section 8

In your application, before calling any Flash API functions do the following:

 Step Description Reference

 4 Initialize the PLL control register (PLLCR) and wait for the PLL to lock. Section 9

 5 Make sure the PLL is not running in limp mode. If the PLL is in limp mode, do
not call any of the API functions as the device will not be running at the proper
frequency.

Section 10

 6 Optional: The API must execute from internal SARAM. If the API is to be copied
from flash/OTP into internal SARAM memory then follow the instructions in this
section.

Section 11

 7 Initialize the 32-bit global variable Flash_CPUScaleFactor Section 12

 8 Initialize the global function pointer Flash_CallbackPtr to point to the
application’s callback function. Alternatively set the pointer to NULL.

Section 13

 9 Optional: Disable global interrupts before calling an API function. Section 14

 10 Understand the API restrictions detailed in this section before making any API
calls.

Section 15

 11 Optional: Run the frequency toggle test to confirm proper frequency
configuration of the Flash API. Note: The ToggleTest function will execute
forever. You must halt the processor to stop this test.

Section 16

 12 Optional: Unlock the code security module (CSM). Section 17

 13 Call the Flash API Functions described in the API Reference Section 18

The called flash API function will do the following:

� The watchdog timer is disabled. (Section 15).
� Checks the CLASSID/PARTID (memory location 0x0882/0x380090) register to make sure the part is the

correct device
� Checks the contents of 0x3FFFB9 in the boot ROM for API version vs. silicon revision compatibility.
� Performs the called operation and:

o Disables and restores global interrupts (via INTM, DBGM, XNMICR) around time critical code
segments. (Section 14).

o Invokes the callback function if Flash_CallbackPtr is not NULL.
� Returns success or an error code. These are defined in F2833x_API_Library.h (Section 18.11)

The user’s code should then do the following:

 Step Description Reference

 14 Check the return status against the error codes. Section 18.11

 15 Optional: Re-enable the watchdog timer.

TMS320F2833x Flash API
August 14, 2008

10 of 41

6. Step 1: Modify Flash2833x_API_Config.h

Modify Flash2833x_API_Config.h file, found in the include directory of each API, to match your specific target
operating conditions.

6.1. Specify the device.

This definition is used by the API main include file, Flash2833x_API_Library.h, to conditionally compile
in options specific to each device. These options include sector bit masks and macros that interface to
the API functions.

6.2. Specify the clock rate of the CPU (SYSCLKOUT) in nanoseconds.

Uncomment the line corresponding to the CPU Clock rate (SYSCLKOUT) in nanoseconds at which the
API functions will be run at. This is done by removing the leading // in front of the correct line. Only one
line should be uncommented. The file lists a number of commonly occurring clock rates. If your CPU
clock rate is not listed, then provide your own definition using the examples as a guideline.

For example: Suppose the final CPU clock rate will be 125 MHz. This corresponds to a 8.000 nS cycle
time. There is no line present for this clock speed, so you should insert your own entry and comment
out all other entries:

 /*--
 * Flash2833x_API_Config.h

 ---/

…
//#define CPU_RATE 6.667L // for a 150MHz CPU clock speed (SYSCLKOUT)

#define CPU_RATE 8.000L // for a 125MHz CPU clock speed (SYSCLKOUT)

//#define CPU_RATE 10.000L // for a 100MHz CPU clock speed (SYSCLKOUT)

//#define CPU_RATE 13.330L // for a 75MHz CPU clock speed (SYSCLKOUT)

…

The CPU clock rate is used during the compile to calculate a scale factor for your operating frequency.
This scale factor will be used by the Flash API functions to properly scale software delays that are
VITAL to the proper operation of the API.

The formula, found at the bottom of the Flash2833x_API_Config.h, file for this calculation is:

 /*--

 * Flash2833x_API_Config.h

 ---/

…
#define SCALE_FACTOR 1048576.0L*((200L/CPU_RATE))

…

CAUTION

 For flash integrity at operating frequencies, the device should always be programmed

at the fastest possible CPU frequency. For example, if the CLKIN frequency is 30 MHz
program the device at 150 MHz rather than 30 MHz or 60 MHz.

The flash API is not designed to function properly below 10 MHz.

TMS320F2833x Flash API
July 9, 2008

11 of 41

7. Step 2: Include Flash2833x_API_Library.h

Flash2833x_API_Library.h is the main include file for the Flash API and should be included in any application
source file that interfaces to the Flash API.

Flash2833x_API_Library.h contains the following:

� Error code definitions. Refer to section 18.11.

� Sector bit mask definitions that can be used when calling the erase function.

� Flash status structure (FLASH_ST) definition used by the API functions to return information back to the

calling routine.

� Function prototypes for each API library. Refer to section 18.

� Frequency scale factor definition: Flash_CPUScaleFactor. Refer to section 12.

� Pointer to callback function definition: Flash_CallbackPtr. Refer to section 13.

� Macros to enable easy porting between the API libraries. Note: depending on which API is being used;
some 2833x devices may not be included in this file since they were released to market at a later time.
The header file for the newer device can be used if required. Refer to section 18.1.

8. Step 3: Include the proper Flash API library

The proper Flash API library must also be included in your project.

By default <> = C:\tidcs\c28

F28335: <>\Flash28_API\Flash28335_API_V210\lib\Flash28335_API_V210.lib

F28334: <>\Flash28_API\Flash28334_API_V210\lib\Flash28334_API_V210.lib

F28332: <>\Flash28_API\Flash28332_API_V210\lib\Flash28332_API_V210.lib

The Flash APIs have been compiled with the large memory model (-ml) option. The small memory model
option is not supported. For information on the large memory model refer to the TMS320C28x Optimizing
C/C++ Compiler User’s Guide (literature #SPRU514).

The F2833x Flash APIs have been compiled using the “--float_support=fpu32” floating point option. Only object
files compiled as such can be linked to the APIs.

9. Step 4: Initialize PLL Control Register (PLLCR)

It is vital that the API functions be run at the proper operating frequency. To achieve this, the calling
application must initialize the PLLCR register before calling any of the API functions. To change the PLLCR
follow the flow outlined in the device appropriate System Control and Interrupts Reference Guide. Following
this flow is important in order to make sure that the PLL is not operating in limp mode before changing the
PLLCR register.

TMS320F2833x Flash API
August 14, 2008

12 of 41

As part of this initialization, the calling application must guarantee that the PLL has had enough time to lock at
the new frequency before making API calls. To do this the application can monitor the PLLLOCKS bit in the
PLLSTS register. When this bit is set it indicates that the PLL has completed locking and the CPU is running at
the specified frequency.

10. Step 5: Check PLL Status for Limp Mode Operation

The API functions contain time critical code with software delay loops that must execute to meet specific timing
requirements. For this reason, the device must be operating at the correct CPU frequency before the Flash API
functions are called. If the input clock to the device has gone missing, the PLL will enter what is called limp
mode operation and the CPU will be clocked at a much lower frequency. When this happens the device is reset
and the MCLKSTS bit will be set in the PLLSTS register. If this bit is set, the API functions should not be called.

Refer to the device appropriate TMS320x2833x System Control and Interrupts Reference Guide for more
information on the missing clock detection logic of the F2833x devices.

11. Step 6: Copy the Flash API functions to Internal SARAM

There are two factors that restrict the type of memory that the Flash API functions can be executed from:

� On these devices, there is only one flash array. The flash architecture imposes the restriction that the flash

can perform only one operation at a time. Due to this restriction, when erasing, programming, or verifying
the flash, code itself cannot execute and data cannot be fetched from the flash.

� There are required delays within the flash API functions that are vital to their proper operation. These

delays are implemented via cycle-sensitive software delays. To be accurate, these delays must execute
from zero-waitstate memory.

To satisfy these two restrictions, all flash API functions must be executed from on-chip, zero-wait state SARAM
memory. The figure below illustrates three different methods that can be used to load the API code into the
device.

eCAN-A

SARAM

API Code

Execution

BOOT ROM

CPU

OTP and

FLASH
ARRAY

JTAG

SCI-A

SPI-A

PARALLEL

User's

Application

Flash API

Flash Algos

OTP/Flash
Array Control

Code Composer Studio

SDFlash

F2833x Device

A

B

C

I2C-A

Method A: The code is loaded directly into on-chip SARAM via the JTAG port. This is the method used by
Code Composer Studio and the SDFlash utility.

TMS320F2833x Flash API
July 9, 2008

13 of 41

Method B: The code is loaded directly into on-chip SARAM by one of the ROM boot loaders (SCI, SPI or
Parallel). This is the method used by custom programmers such as SCI programmers.
This method can also be extended to other peripherals by programming a custom loader into the
OTP block. Note: all boot modes shown may not be available on a specific device.

Method C: The API code is embedded within an application that is stored in the flash or OTP. In this case the

API code must first be copied out of flash into on-chip SARAM before it is executed.

If the API functions are loaded directly into on-chip, zero-waitstate SARAM as shown in method A or B then this
step can be skipped. If, however, the Flash API functions are stored in flash or OTP, then the calling
application must first copy the required code into SARAM before making any calls into the API. The following
describes how to accomplish this copy.

Steps to copy the API functions from flash to SARAM:

In the linker command (.cmd) file, create a group section called Flash28_API as shown.

TMS320F28335 Example:

/*--

* User’s .cmd file: TMS320F28335 API Library Group Section Example

---/

...

SECTIONS

{

 Flash28_API:

 {

 -lFlash28335_API_V210.lib(.econst)

 -lFlash28335_API_V210.lib(.text)

 } LOAD = FLASHD,

 RUN = RAML0,

 LOAD_START(_Flash28_API_LoadStart),

 LOAD_END(_Flash28_API_LoadEnd),

 RUN_START(_Flash28_API_RunStart),

 PAGE = 0

...

}

This group section must contain the following blocks:

� API library source code: Example: Flash28335_API_V210.lib(.text)
� API constant parameters: Example: Flash28335_API_V210.lib(.econst).

CAUTION

It is important to include both the constants (.econst) as well as the code
(.text) sections of the library.

TMS320F2833x Flash API
August 14, 2008

14 of 41

This group section defines symbols that the linker will assign to the load start, load end, and run start
addresses of the section.

For the example shown, the linker will assign the following symbols:

� Load address start: Flash28_API_LoadStart
� Load address end: Flash28_API_LoadEnd
� Run address start: Flash28_API_RunStart

These symbols are already declared in the main library include file, Flash2833x_API_Library.h

 /*--

 * Flash2833x_API_Library.h

 ---/

 ...
 extern Uint16 Flash28_API_LoadStart;
 extern Uint16 Flash28_API_LoadEnd;

 extern Uint16 Flash28_API_RunStart;
 ...

These three symbols can then used to copy the Flash API functions from the flash memory to the SARAM as
shown in the included sample programs.

/*--

* User’s application .c file: Example call to a memory copy routine

---/

#include Flash2833x_API_Library.h

...

Example_MemCopy(&Flash28_API_LoadStart, &Flash28_API_LoadEnd, \

 &Flash28_API_RunStart);

/*--

* User’s application .c file: Example memory copy routine

---/

void Example_MemCopy(Uint16 *SourceAddr, Uint16* SourceEndAddr, Uint16* DestAddr)

{

 while(SourceAddr < SourceEndAddr) { *DestAddr++ = *SourceAddr++; }

 return;

 }

This same method and copy routine can be used to copy any additional code and data that is needed during
the programming operation.

TMS320F2833x Flash API
July 9, 2008

15 of 41

CAUTION

It is strongly recommended that you test the CPU frequency and PLL
configuration using the configuration toggle test described in section 16 before
erasing or programming any parts.

If this test fails, DO NOT PROCEED to erase or program the flash until the
problem is corrected, or flash damage can occur.

CAUTION

The SCALE_FACTOR formula is already defined in the file Flash2833x_API_Config.h. This
formula must not be modified. Doing so will cause improper operation of the flash API
functions.

12. Step 7: Initialize Flash_CPUScaleFactor

Flash_CPUScaleFactor is a global 32-bit variable defined by the Flash API functions. The Flash API functions
contain several delays that are implemented as software delays. The correct timing of these software delays is
vital to the proper operation of the API functions. The 32-bit global variable Flash_CPUScaleFactor is used by
the API functions to properly scale these software delays for a particular CPU operating frequency
(SYSCLKOUT).

First, make sure the proper CPU rate in nanoseconds is defined in the library configuration file
Flash2833x_API_Config.h. This step is described in section 6.

The corresponding Flash_CPUScaleFactor value for the defined CPU rate is calculated during the compile by
the following formula:

The calling application must then initialize the global variable Flash_CPUScaleFactor as follows before calling
any API function:

/*---

* Flash2833x_API_Config.h

---/

...

 #define SCALE_FACTOR 1048576.0L*((200L/CPU_RATE))
...

/*---

* Flash2833x_API_Library.h

---/

...
extern Uint32 Flash_CPUScaleFactor;

/*---

* User’s application .c file

---/

#include Flash2833x_API_Library.h

...

Flash_CPUScaleFactor = SCALE_FACTOR;

TMS320F2833x Flash API
August 14, 2008

16 of 41

CAUTION

If the callback function feature is not used, then explicitly set the function pointer to NULL in
the application code. Failure to explicitly initialize the callback function pointer can cause
the code to branch to an undefined location.

By default, the Flash_CallbackPtr is initialized to NULL as part of the compiler’s runtime
initialization routine. If load time initialization is used or if the standard C initialization is
bypassed the pointer will not be initialized and the code can branch to an undefined
location. For this reason it is recommended that Flash_CallbackPtr always be explicitly
initialized before calling the Flash API.

13. Step 8: Initialize the Callback Function Pointer

A callback function is one that is not invoked explicitly by the user’s application; rather the responsibility for its
invocation is delegated to the API function by way of the callback function's address. The callback function can
be used whenever the application must process certain information itself at some time in the middle of the
execution of an API function. For example, if the system has an external watchdog that must be serviced or if
status needs to be sent by way of a communications port, this can be done by the user inserting code within the
callback function.

Flash_CallbackPtr is global function pointer used to specify the callback function to be used by the Flash API.
The Flash API functions will call the callback function at safe times during the program, erase, verify and
depletion recovery algorithms. Refer to section 15 for rules that must be followed when using the callback
function.

To use the callback function, the calling application must first initialize the function pointer Flash_CallbackPtr
before calling any API function. If the callback feature is not going to be used, then set the pointer to NULL.
When Flash_CallbackPtr is NULL the API will not make a call to any function.

/*---

* User’s Application with a Callback Function

---/

#include Flash2833x_API_Library.h

...

void MyCallbackFunction(void); // My Callback function prototype

...

Flash_CallbackPtr = &MyCallbackFunction;

...

...

void myCallbackFunction(void)

{

 // User’s application code to execute during the callback function

 // This must not execute from flash/OTP or read data from flash/OTP

}

/*---

* User’s Application without a Callback Function

---/

#include Flash2833x_API_Library.h

#include <stdio.h> // NULL is defined here

...
Flash_CallbackPtr = NULL;

TMS320F2833x Flash API
July 9, 2008

17 of 41

CAUTION

During the callback function, the flash and OTP are not available for use by the
application. Code cannot be executed from the flash/OTP nor can data be read from
the flash/OTP. Flash and OTP will only again become available after the API function
exits. Thus, the callback function must be executed completely outside of the
flash/OTP and must not expect to read data from the flash/OTP.

Attempting to execute from the flash will result in unknown opcode fetch and likely
result in an illegal trap (ITRAP). Data fetched will be an unknown value.

During the callback function, the flash and OTP are in a safe state such that the callback function can take as
much time as required to send status, service an external watchdog or perform other operations. However,
flash and OTP are not available for execution of code or reading of data during this time. Refer to section 15 for
rules that must be followed during the callback function.

14. Step 9: Optional: Disable Global Interrupts

The Flash API saves the state of INTM and DBGM before and restores them after time critical code segments.
The following two assembly routines are used to enable this save and restore feature:

In addition to global interrupts, the XNMI interrupt is also disabled during time critical code. That is, the state of
the XNMICR control register is saved and XNMI is disabled. After the time critical code, XNMICR is restored.

/*---

* API Save INTM and DBGM / Set INTM, DBGM to Disable Interrupts

* This code is internal to the API and is called by the API routines

---/

_Fl28x_DisableInt:

 PUSH ST1 ;Save the state of INTM DBGM (in ST1)

 SETC INTM,DBGM ;Disable interrupts

 MOV AL, *--SP ;Return ST1 to the calling routine

 LRETR

/*---

* API Restore INTM, DBGM

* This code is internal to the API and is called by the API routines

---/

_Fl28x_RestoreInt:

 MOV *SP++, AL ;Pushed the saved ST1 onto the stack

 POP ST1 ;Restore INTM and DBGM (in ST1)

 LRETR

TMS320F2833x Flash API
August 14, 2008

18 of 41

CAUTION

During the time that interrupts are enabled, the flash and OTP are not available for
use by the application. Code cannot be executed from the flash/OTP nor can data be
read from the flash/OTP.

Flash and OTP will only again become available after the API function exits. Any ISR
routines that are executed during an API function call must completely reside outside
of the flash/OTP and must not expect to read data from the flash/OTP.

Attempting to execute from the flash/OTP will result in undefined opcode fetch and
likely result in an illegal trap (ITRAP). Data fetched will be an unknown value.

During the time that interrupts are enabled, the flash and OTP are in a safe state such that an interrupt service
routine (ISR) can take as much time as required to service the interrupt. Flash and OTP are not available for
execution of code or reading of data during this time. Refer to section 15 for rules that must be followed when
interrupts are allowed during API function calls.

/*---

* API Save/Restore XNMICR

* This code is internal to the API routines

---/

#define XNMICR (volatile Uint16*)0x00007077 // XNMI Control

Uint16 XnmiCr;

...

XnmiCr = *XNMICR; // Save XNMICR

*XNMICR = *XNMICR & 0xFFFE // Disable XNMI

...

// Time critical API code

...

*XNMICR = XnmiCR; // Restore XNMICR

TMS320F2833x Flash API
July 9, 2008

19 of 41

CAUTION

If you clear the WD_OVERIDE bit in your code so that the watchdog cannot be disabled by
the API, you will run the risk of resetting the DSP during an API operation. This can leave
the flash in an unknown state and possibly lock the Code Security Module with an unknown
password. If you must clear the WD_OVERIDE bit, then it is recommended that you re-
assign the watchdog output to its interrupt before calling an API function. This will keep the
watchdog from resetting the device during this time.

15. Step 10: Rules for Callback, Interrupts, and Watchdog

The following API restrictions should be understood:

� If an interrupt is taken during the erase, program, or depletion recovery routines, then the flash/OTP will not

be accessible. Thus no code or data used by the interrupt can be stored in the flash or OTP.

� When the callback function is invoked during the erase, program, or depletion recovery routines, the

flash/OTP will not be accessible. Thus no code or data used by the callback function can be stored in the
flash or OTP.

� The flash/OTP is left in a safe state when interrupts are enabled and during the callback function. There is

no restriction on the amount of time that can be spent in the ISR or callback function.

� The API functions are not reentrant.

� Only one API function should be called at any particular time. If one API function has been called but has

not yet completed, do not call another API function from within the interrupt service routine or callback
function. Let the API function complete and exit before calling any other API function.

� The ToggleTest API function disables interrupts and runs until the processor is halted by the user.

� The ToggleTest API function does not invoke the callback function.

� The Erase function disables interrupts for up to 3-4ms. This is the longest duration interrupts are disabled

in any of any of the API functions, except for the ToggleTest function.

� The erase function will invoke the callback function every 3-4ms. This is the longest duration between
callback function invocations, except for the ToggleTest function.

� The API disables the watchdog using the following code such that the watchdog counter pre-scaler is not

modified:

/*---

* API Watchdog Disable

* This code is internal to the API routines

---/

#define WDCR (volatile Uint16*)0x00007029 // Watchdog control register

asm(“ EALLOW);

*WDCR = (*WDCR | 0x0068); // Disable the watchdog
asm(“ EDIS”);

TMS320F2833x Flash API
August 14, 2008

20 of 41

CAUTION

Choose an appropriate pin for your system. Check your board design and board
connections to be certain that the pin you have selected for toggling is not being driven
by a source other than the DSP, or voltage contention can occur. Also, be certain that
whatever the toggling pin is connected to in your system will not encounter difficulty
when the pin is toggling (e.g, the device the pin is connected to should be powered-
down, held in reset, etc.).

16. Step 11: Optional: Frequency and PLL configuration toggle test

This test is used to confirm that the algorithms are properly configured for the CPU frequency (Refer to section
12) and PLL multiplier (Refer to section 9). During this test, a specified GPI/O pin will toggle at a known
frequency. If this frequency is not correct then the API functions are not configured correctly.

This test is started by calling the API ToggleTest function documented in section 18.6. This function allows you
to specify which GPI/O pin will be toggled by passing a pointer to its corresponding GPIOMUX and a pointer to
its GPIOTOGGLE register. Finally you can specify exactly which pin on the specified port will be toggled by a
Mask value.

While the test runs, monitor the selected pin using an oscilloscope.

� If the algorithms are configured correctly for your CPU rate then the pin will toggle near 10kHz
(100µS +/- 10µS cycle time).

� If the pin is toggling at a different rate, then the algorithms are not configured correctly. If this

is the case, review steps 1-6 in the checklist shown in section 5 to ensure the proper Flash API
setup.

Note: The toggle test runs forever and does not return. Interrupts are disabled during the frequency toggle test.
The device can be halted anytime during this test to stop execution. This test is only used during development
to confirm the configuration of the Flash API. If this function is not referenced in your code it will not be linked
in.

TMS320F2833x Flash API
July 9, 2008

21 of 41

17. Step 12: Optional: Unlock the Code Security Module (CSM)

The Code Security Module (CSM) protects the contents of the F2833x flash and OTP memory blocks as well as
L0/L1 SARAM blocks. The Flash API functions must be able to access the flash while performing any erase,
program, or verify operations. There are two possible scenarios to consider:

� The Flash API functions are executed from within memory protected by the CSM. Since the API functions

are executing from within CSM protected memory they will be able to access any other secure memory
location including the flash and OTP. In this case the CSM can remain locked and no action is required.

� The Flash API Functions are executed from memory not protected by the CSM. In this case, the API will

not be able to access any secure memory location and thus cannot access the flash or OTP. In this case,
the calling application must first unlock the CSM before making any calls to the Flash API.

Refer to TMS320x2833x System Control and Interrupts Reference Guide for details on the proper operation of
the CSM.

18. Step 13: API Reference

18.1. Data Type Conventions

The following data type definitions are defined in Flash2833x_API_Library.h and are used within this
document:

 #ifndef DSP28_DATA_TYPES

#define DSP28_DATA_TYPES

typedef int int16;

typedef long int32;

typedef long long int64;

typedef unsigned int Uint16;

typedef unsigned long Uint32;

typedef unsigned long long Uint64;

typedef float float32;

typedef long double float64;

#endif

18.2. API Function Naming Conventions and Function list

The F2833x API function names are of the following form:

Flash<device>_<operation>(args)

Where <device> is 28335, 28334, 28332
 <operation> is the operation being performed such as Erase, Program, Verify

For example: Flash28335_Program(args) is the F28335 Program function.

The API function definitions for the F2833x API libraries are compatible. For this reason the file
Flash2833x_API_Library.h includes macro definitions that allow a generic function call to be used in
place of the device specific function call.

Flash_<operation>(args)

Use of these macros is optional. They have been provided to allow easy porting of code between the
devices. All of the examples shown in this document use the generic function call.

Note: depending on which API is being used; some devices may not be included in this file since they
were released to market at a later time. The header file for the newer device can be used if required.

TMS320F2833x Flash API
August 14, 2008

22 of 41

 TMS320F28335 API Compatibility Macros:

TMS320F28334 API Compatibility Macros:

TMS320F28332 API Compatibility Macros:

For users porting from the F281x family of DSPs:

Except for the ToggleTest function, the F2833x API function calls are all compatible with the F281x API
function calls. This makes moving from the F281x to the F2833x straight forward.

For users porting from the F280x and F2804x families of DSPs:

The F2833x API function calls are all compatible with the F280x and the F2804x API function calls.
This makes moving from the F280x or the F2804x to the F2833x straight forward.

18.3. Flash status structure (FLASH_ST)

This structure is used to pass information back to the calling routine by the Program, Erase and Verify
API functions. This structure is defined in Flash2833x_API_Library.h:

typedef struct {

 Uint32 FirstFailAddr;

 Uint16 ExpectedData;

 Uint16 ActualData;

}FLASH_ST;

Generic Function F28335 API Function

Flash_ToggleTest Flash28335_ToggleTest

Flash_Erase Flash28335_Erase

Flash_Program Flash28335_Program

Flash_Verify Flash28335_Verify

Flash_DepRecover Flash28335_DepRecover

Flash_APIVersion Flash28335_APIVersion

Flash_APIVersionHex Flash28335_APIVersionHex

Generic Function F28334 API Function

Flash_ToggleTest Flash28334_ToggleTest

Flash_Erase Flash28334_Erase

Flash_Program Flash28334_Program

Flash_Verify Flash28334_Verify

Flash_DepRecover Flash28334_DepRecover

Flash_APIVersion Flash28334_APIVersion

Flash_APIVersionHex Flash28334_APIVersionHex

Generic Function F28332 API Function

Flash_ToggleTest Flash28332_ToggleTest

Flash_Erase Flash28332_Erase

Flash_Program Flash28332_Program

Flash_Verify Flash28332_Verify

Flash_DepRecover Flash28332_DepRecover

Flash_APIVersion Flash28332_APIVersion

Flash_APIVersionHex Flash28332_APIVersionHex

TMS320F2833x Flash API
July 9, 2008

23 of 41

18.4. API Version (in float) Function

Description: The API Version function returns the version number of the API. .

Note: The Flash_APIVersionHex() function can be used in place of this function to avoid issues
associated with processing floating point values.

Function Prototype (Defined in Flash2833x_API_Library.h)

 TMS320F28335:

extern float32 Flash28335_APIVersion(void);

 TMS320F28334:

extern float32 Flash28334_APIVersion(void);

 TMS320F28332:

extern float32 Flash28332_APIVersion(void);

Return Value:

� The Flash_APIVersion function returns the current version of the API as a float value. Note: The

Flash_APIVersionHex function can be used in place of this function to avoid issues associated with
floating point values.

Notes:

� By using the API compatibility macros provided in Flash2833x_API_Library, this function can be

called as Flash_APIVersion. All of the examples shown use this generic function call. Refer to
section 18.2.

Example:

/*---

* Example: Get the version of the API as a floating point value

---/

#include Flash2833x_API_Library.h

#define VALID_API_VERSION (float32)2.10 // Version 2.10

...

float32 ApiVerison;

ApiVersion = Flash_APIVersion();

if(ApiVersion == VALID_API_VERSION)

{

 // Code for valid API

}

else

{

 // Code for invalid API
}

TMS320F2833x Flash API
August 14, 2008

24 of 41

18.5. API Version (in Hex) Function

Description: This function returns the current API version number in decimal encoded hex..

Function Prototypes (Defined in Flash2833x_API_Library.h)

TMS320F28335:

extern Uint16 Flash28335_APIVersionHex(void);

TMS320F28334:

extern Uint16 Flash28334_APIVersionHex(void);

TMS320F28332:

extern Uint16 Flash28332_APIVersionHex(void);

Return Value:

� If the function returns the current version of the API in a 16-bit decimal encoded hex value. This

function can be used in place of the Flash_APIVersion() function to avoid issues associated with
floating point values. The value is divided such that the upper 8 bits are the major release and the
lower 8 bits are the minor release. The version uses values 0-9, but does not use A-F.

For example:

 If the API Version is 1.29, Flash_APIVersionHex would return 0x0129
 If the API Version is 3.10 Flash_APIVersionHex would return 0x0310

Notes:

� By using the API compatibility macros provided in Flash2833x_API_Library, this function can be

called as Flash_APIVersionHex. All of the examples shown use this generic function call. Refer to
section 18.2.

Example:

/*---

* Example: Read the version of the API in Hex

---/

#include Flash2833x_API_Library.h

#define VALID_API_VERSION 0x0210 // Version 2.10

...

Uint16 ApiVerison;

ApiVersion = Flash_APIVersionHex();

if(ApiVersion == VALID_API_VERSION)

{

 // Code for valid API

}

else

{

 // Code for invalid API

}

TMS320F2833x Flash API
July 9, 2008

25 of 41

18.6. ToggleTest Function

Description: The ToggleTest function toggles a specified GPIO port pin at a 10 kHz rate. This test
can be run to test the frequency configuration of the flash API. If the toggle rate of the specified I/O pin
is not correct then the API is not configured properly.

Note that due to different device requirements, this function has changed from the F281x API. If
you are porting from the F281x, make sure to setup the GPIO prior to the call to the ToggleTest
function and to change the function call appropriately.

IMPORTANT: Before calling this function you must first configure the GPIO pin you wish to use as a
GPIO output pin by writing to the appropriate GPxMUX1/2 register and the GPxDIR register.

Function Prototype (Defined in Flash2833x_API_Library.h)

 TMS320F28335:

extern void Flash28335_ToggleTest(

 volatile Uint32 *ToggleReg, // Pointer to I/O port TOGGLE register

 Uint32 Mask // Pin Mask

);

 TMS320F28334:

extern void Flash28334_ToggleTest(

 volatile Uint32 *ToggleReg, // Pointer to I/O port TOGGLE register

 Uint32 Mask // Pin Mask

);

 TMS320F28332:

extern void Flash28332_ToggleTest(

 volatile Uint32 *ToggleReg, // Pointer to I/O port TOGGLE register

 Uint32 Mask // Pin Mask

);

Parameter: Description:
volatile Uint32

*ToggleReg
Pointer to the desired 32-bit GPxTOGGLE Register.

This would be the address of the GPxTOGGLE register.

Uint32 Mask Mask value specifying which pin to toggle on the specified I/O
port. If the bit is set, the pin will be toggled, if it is clear then the
pin will not be toggled.

For example: Toggle Pin GPIO0: Use Mask: 0x00000001
 Toggle Pin GPIO1: Use Mask: 0x00000002 etc..

Return Values: None. This function runs “forever” and never returns.

Notes:

� BEFORE calling this function you must first configure the GPIO pin you wish to use as a GPIO

output pin by writing to the appropriate GPxMUX1/2 register and the GPxDIR register. This
function assumes that the pin is already configured as a GPIO output.

� By using the F2833x API compatibility macros provided in Flash2833x_API_Library, this function
could be called as Flash_ToggleTest. All of the examples shown use this generic function call.
Refer to section 18.2.

TMS320F2833x Flash API
August 14, 2008

26 of 41

� Choose an appropriate pin for your system. Check your board design and board connections to be
certain that the pin you have selected for toggling is not being driven by a source other than the
DSP, or voltage contention can occur. Also, be certain that whatever the toggling pin is connected
to in your system will not encounter difficulty when the pin is toggling (e.g, the device the pin is
connected to should be powered-down, held in reset, etc.).

Example: Toggle Test on GPIO32

…

/*---

* User’s application .c code: Example Toggle GPIO32

---/

#include Flash2833x_API_Library.h

...

#define GPBMUX1 (volatile Uint32*)0x00006F98 // GPIO B mux 1

#define GPBTOGGLE (volatile Uint32*)0x00006FCE // GPIO B toggle

#define GPBDIR (volatile Uint32*)0x00006F9A // GPIO B dir

#define GPIO32_MASK (Uint32)0x00000001 // GPIO32 mask

...

Flash_CPUScaleFactor = SCALE_FACTOR;

Flash_CallbackPtr = NULL;

...

// Code to set PLLCR and wait for PLL lock

...

// BEFORE calling the toggle test, configure the desired pin to be a GPIO

// output pin. For this example, configure GPIO32 as a GPIO output

 EALLOW; // Macro for asm(“ EALLOW);

 *GPBMUX1 = 0x00000000; // All GPIO B pins are GPIO

 *GPBDIR = 0x00000001; // All GPIO B pins are outputs

 EDIS;

// Call the Toggle Test function. This function will run forever

// and will not exit.

 Flash_ToggleTest(GPBTOGGLE,GPIO32_MASK);

...

TMS320F2833x Flash API
July 9, 2008

27 of 41

18.7. Erase Function

Description: The Erase function will erase the specified flash sectors. The remaining sectors will not
be changed.

Function Prototypes (Defined in Flash2833x_API_Library.h)

TMS320F28335:

extern Uint16 Flash28335_Erase(

 Uint16 SectorMask, // Sector mask

 FLASH_ST *FEraseStat // Pointer to the status structure

);
TMS320F28334:

extern Uint16 Flash28334_Erase(

 Uint16 SectorMask, // Sector mask

 FLASH_ST *FEraseStat // Pointer to the status structure

);
 TMS320F28332:

extern Uint16 Flash28332_Erase(

 Uint16 SectorMask, // Sector mask

 FLASH_ST *FEraseStat // Pointer to the status structure

);

Parameter: Description:
Uint16 SectorMask Sector Mask value: Set bits indicate which sectors will be erased.

Bit F28332 F28334 F28335

0 A A A

1 B B B

2 C C C

3 D D D

4 ignored E E

5 ignored F F

6 ignored G G

7 ignored H H

14:8 ignored ignored ignored
FLASH_ST *FEraseStat Pointer to a flash status structure.

This structure is defined in Flash2833x_API_Library.h:

typedef struct {

 Uint32 FirstFailAddr;

 Uint16 ExpectedData;

 Uint16 ActualData;

}FLASH_ST;

Note: For erase, only the FirstFailAddr of this structure is currently
used.

Return Value:

� If the function succeeds STATUS_SUCCESS is returned.
� If the function fails a status value indicating the reason for the failure is returned.

TMS320F2833x Flash API
August 14, 2008

28 of 41

Notes:

� By using the F2833x API compatibility macros provided in Flash2833x_API_Library, this function

can be called as Flash_Erase. All of the examples shown use this generic function call. Refer to
section 18.2.

� After a sector is erased, all of its memory locations will read back 0xFFFF.

� The Erase function includes a preconditioning (“clear”) step as well as a post-conditioning
(“compaction”) of the specified sectors. A separate step to precondition the flash is not required.

� On the F2833x the specified sectors are erased in order Sector H – Sector A.

� The minimum amount of flash memory that can be erased on a F2833x device is a single sector. A
word or bit cannot be erased by itself.

� The OTP block cannot be erased.

� The following sector mask #defines are included in Flash2833x_API_Library.h

/*---

* Flash2833x_API_Library.h

---/

#define SECTORA (Uint16)0x0001

#define SECTORB (Uint16)0x0002

#define SECTORC (Uint16)0x0004

#define SECTORD (Uint16)0x0008

#define SECTORE (Uint16)0x0010

#define SECTORF (Uint16)0x0020

#define SECTORG (Uint16)0x0040

#define SECTORH (Uint16)0x0080

TMS320F2833x Flash API
July 9, 2008

29 of 41

Erase function continued…

Examples:

/*---

* User’s Application

* Example: Erase Sector D then erase sector C and B

---/

#include “Flash2833x_API_Library.h”

...

Uint16 Status;

FLASH_ST EraseStatus;

...

Flash_CPUScaleFactor = SCALE_FACTOR;

Flash_CallbackPtr = NULL;

...

// Code to set PLLCR and wait for PLL lock

...

// Erase Sector D

// Following is defined in Flash2833x_API_Library.h

// #define SECTORD (Uint16)0x0008

// User’s Code:

Status = Flash_Erase(SECTORD,&EraseStatus);

if(Status != STATUS_SUCCESS) Error(Status);

...

// Erase Sector C and Sector B

// Following is defined in Flash2833x_API_Library.h

// #define SECTORC (Uint16)0x0004

// #define SECTORB (Uint16)0x0002

// User’s Code:

Status = Flash_Erase((SECTORC|SECTORB),&EraseStatus);

if(Status != STATUS_SUCCESS) Error(Status);

...

TMS320F2833x Flash API
August 14, 2008

30 of 41

18.8. Program Function

 Description: The program function will program a buffer of 16-bit values into the flash or OTP.

Function Prototypes (Defined in Flash2833x_API_Library.h)

TMS320F28335:

extern Uint16 Flash28335_Program(

 Uint16 *FlashAddr, // Pointer to the first flash/OTP loc

 Uint16 *BufAddr, // Pointer to the buffer

 Uint32 Length, // Number of 16-bit values to program

 FLASH_ST *FProgStatus // Pointer to the status structure

);
TMS320F28334:

extern Uint16 Flash28334_Program(

 Uint16 *FlashAddr, // Pointer to the first flash/OTP loc

 Uint16 *BufAddr, // Pointer to the buffer

 Uint32 Length, // Number of 16-bit values to program

 FLASH_ST *FProgStatus // Pointer to the status structure

);
TMS320F28332:

extern Uint16 Flash28332_Program(

 Uint16 *FlashAddr, // Pointer to the first flash/OTP loc

 Uint16 *BufAddr, // Pointer to the buffer

 Uint32 Length, // Number of 16-bit values to program

 FLASH_ST *FProgStatus // Pointer to the status structure

);

Parameter: Description:
Uint16 *FlashAddr Pointer to the first 16-bit location in flash or OTP to be

programmed.
Uint16 *BufAddr Pointer to the buffer of 16-bit data or code to be programmed into

flash or OTP.
Uint32 Length Number of 16-bit values to be programmed into the flash or OTP
FLASH_ST *FProgStatus Pointer to a flash status structure.

This structure is defined in Flash2833x_API_Library.h:

typedef struct {

 Uint32 FirstFailAddr;

 Uint16 ExpectedData;

 Uint16 ActualData;

}FLASH_ST;

Return Value:

� If the function succeeds STATUS_SUCCESS is returned.
� If the function fails a status value indicating the reason for the failure is returned.

TMS320F2833x Flash API
July 9, 2008

31 of 41

Notes:

� By using the F2833x API compatibility macros provided in Flash2833x_API_Library, this function

can be called as Flash_Program. All of the examples shown use this generic function call.Refer to
section 18.2.

� Program operates on a 16-bit word at a time until all the data in the buffer is programmed or an
error is detected.

� Program moves bits from a value of 1 to a value of 0 in order to match the data to be programmed.

� Typically a sector will be erased prior to being programming. However, to protect the flash and
allow for user flexibility, the Program operation will not attempt to program any bit that has
previously been programmed. For example, a location can be programmed with 0xFFFE and
later the same location can be programmed with 0xFFFC without going through an erase cycle.
During the second programming call, the Program operation will detect that bit 0 was already
programmed and will only program bit 1.

� If the data to be programmed has a 1 in any bit that has previously been programmed the function
will stop and return STATUS_FAIL_ZERO_BIT_ERROR. For example, if you program a location
with 0x0001 and then try to program the same location with 0x0002 the function will return this
failure. This is because no single bit can be erased (i.e. moved from a 0 to a 1). If this happens, the
function will not attempt to program any other bits.

TMS320F2833x Flash API
August 14, 2008

32 of 41

Example:

/*---

* Example: Program 0x400 values into the flash starting at 0x330000

---/

#include Flash2833x_API_Library.h

#define WORDS_IN_FLASH_BUFFER 0x400

...

volatile Uint16 Buffer[WORDS_IN_FLASH_BUFFER];

Uint16 *Flash_ptr; // Pointer to a location in flash

Uint32 Length; // Number of 16-bit values to be programmed

FLASH_ST ProgStatus; // Status structure

Uint16 Status; // Return status

...

Flash_CPUScaleFactor = SCALE_FACTOR;

Flash_CallbackPtr = NULL;
...

// Code to set PLLCR and wait for PLL lock

...

// Fill the buffer with some data to program into the flash

for(i=0; i<0x400; i++) Buffer[i] = 0x8000+i;

...

Flash_ptr = (Uint16 *)0x00330000;

Length = 0x400;

...

// Call the program API function

Status = Flash_Program(Flash_ptr,Buffer,Length,&ProgStatus);
if(Status != STATUS_SUCCESS) Error(Status);

TMS320F2833x Flash API
July 9, 2008

33 of 41

18.9. Verify Function

Description: Verify the contents of flash or OTP against a buffer. While the program operation itself
does verification as it programs this verification is an additional step that can be taken after
programming is complete.

Function Prototypes (Defined in Flash2833x_API_Library.h)

TMS320F28335:

extern Uint16 Flash28335_Verify(

 Uint16 *FlashAddr, // Pointer to the first flash/OTP loc

 Uint16 *BufAddr, // Pointer to the buffer

 Uint32 Length, // Number of 16-bit values to verify

 FLASH_ST *FVerifyStat // Pointers to the status structure

);
TMS320F28334:

extern Uint16 Flash28334_Verify(

 Uint16 *FlashAddr, // Pointer to the first flash/OTP loc

 Uint16 *BufAddr, // Pointer to the buffer

 Uint32 Length, // Number of 16-bit values to verify

 FLASH_ST *FVerifyStat // Pointers to the status structure

);
TMS320F28332:

extern Uint16 Flash28332_Verify(

 Uint16 *FlashAddr, // Pointer to the first flash/OTP loc

 Uint16 *BufAddr, // Pointer to the buffer

 Uint32 Length, // Number of 16-bit values to verify

 FLASH_ST *FVerifyStat // Pointers to the status structure

);

Parameter: Description:
Uint16 *FlashAddr Pointer to the first location in flash or OTP to be programmed.
Uint16 *BufAddr Pointer to the buffer of data or code to be programmed into flash

or OTP.
Uint32 Length Number of 16-bit values to be programmed into the flash or OTP
FLASH_ST *FProgStatus Pointer to a flash status structure.

This structure is defined in Flash2833x_API_Library.h:

typedef struct {

 Uint32 FirstFailAddr;

 Uint16 ExpectedData;

 Uint16 ActualData;

}FLASH_ST;

Return Value:

� If the function succeeds STATUS_SUCCESS is returned.

� If the function fails a status value indicating the reason for the failure is returned.

Notes:

� By using the F2833x API compatibility macros provided in Flash2833x_API_Library, this function

can be called as Flash_Verify. The examples use this generic function call. Refer to section 18.2.

TMS320F2833x Flash API
August 14, 2008

34 of 41

/*---

* Example: Verify 0x400 values in the flash starting at 0x330000

---/

#include Flash2833x_API_Library.h

#define WORDS_IN_FLASH_BUFFER 0x400

...

volatile Uint16 Buffer[WORDS_IN_FLASH_BUFFER];

Uint16 *Flash_ptr; // Pointer to a location in flash

Uint32 Length; // Number of 16-bit values to be programmed

FLASH_ST VerifyStatus; // Status structure

Uint16 Status; // Return status

...

Flash_CPUScaleFactor = SCALE_FACTOR;

Flash_CallbackPtr = NULL;
...

// Code to set PLLCR and wait for PLL lock

...

// Fill the buffer with some data to verify against

for(i=0; i<0x400; i++) Buffer[i] = 0x8000+i;

...

Flash_ptr = (Uint16 *)0x00330000;

Length = 0x400;

...

// Call the verify API function

Status = Flash_Verify(Flash_ptr,Buffer,Length,&VerifyStatus);
if(Status != STATUS_SUCCESS) Error(Status);

TMS320F2833x Flash API
July 9, 2008

35 of 41

18.10. Depletion Recovery Function

 Description: The depletion recovery algo looks for sectors that are in depletion and attempts to

recover them. All sectors on the device are checked

Function Prototypes (Defined in Flash2833x_API_Library.h)

TMS320F28335:

extern Uint16 Flash28335_DepRecover(void);
TMS320F28334:

extern Uint16 Flash28334_DepRecover(void);
TMS320F28332:

extern Uint16 Flash28332_DepRecover(void);

Return Value:

� If the function succeeds STATUS_SUCCESS is returned.
� If the function fails STATUS_FAIL_PRECONDITION is returned.

Notes:

How does depletion occur?

If the erase operation is halted and not allowed to complete, bits in the sector may be left in an over erased
or depleted state. When this happens, the device may then begin to fail to erase. The depletion recovery
algo looks for sectors that are in depletion and attempts to recover them. All sectors on the device are
checked.

To avoid depletion, all efforts should be taken to not stop the erase algorithm before it completes. In
addition to depletion, halting erase can also affect the CSM passwords. If the passwords are left in an
unknown state then the device cannot be erased, programmed or recovered as the flash cannot be
accessed unless the API function can be executed within CSM protected SARAM memory. If, however, the
CSM passwords are known and the device can be unlocked, then the depletion recovery algorithm can be
run to try and recover the part.

The current maximum timeout for the algorithm is approximately 35 seconds for each sector that is in
depletion. Typically only one sector would be in depletion unless erase has been called multiple times on
multiple sectors without running to completion. If a longer timeout can be tolerated, the depletion recovery
can be used multiple times.

There is no guarantee that this algorithm will be able to bring a sector out of depletion within a reasonable
amount of time. The deeper in depletion the part is, the longer it will take to recover. The Flash API erase
function has been implemented to erase the flash in such a manner that it is not put into deep depletion.
However, if the CPU is halted during an erase pulse for a long period of time the part can be put into a deep
depletion that may not be recoverable in a time period that is acceptable.

This algorithm cannot recover the part if the flash passwords are unknown. For example if power is lost
during the erase of sector A, where the CSM passwords are located, then the device may be permanently
locked and the recovery algorithm cannot operate on the flash.

TMS320F2833x Flash API
August 14, 2008

36 of 41

18.11. Step 14: Return Status Values

To communicate back to the calling application, the API returns the following status messages. These
status values are defined in the Flash2833x_API_Library.h file for use within your application.

Status Definition Notes

0 STATUS_SUCCESS Operation was successful.

10 STATUS_FAIL_CSM_LOCKED

The API function is unable to access the flash
array due to a locked Code Security Module.

The API must either execute from secure
SARAM memory (L0-L3) or the CSM must be
unlocked before calling the API function.

Refer to section 17.

11 STATUS_FAIL_REVID_INVALID

Reserved – Not used in the F2833x API

This error was used in early F281x APIs but is
not used in the F2833x API.

12 STATUS_FAIL_ADDR_INVALID

An invalid address (outside of the flash or
OTP bank) was passed to the Flash API.

This could be caused by the first address
being outside of flash/User OTP or the length
being such that the last address will be
outside of flash/User OTP.

None of the values will be programmed.

In this case the flash status structure
(FLASH_ST) is not updated with any
information.

This error can be returned by the Erase and
depletion recovery functions if an invalid
address is used for the pre-conditioning of the
flash. In this case check that the .const
section of the API is located in SARAM that
can be accessed by the API. This section
contains important information that is used by
the flash Erase and DepRecovery functions.

13 STATUS_FAIL_INCORRECT_PARTID

The expected PARTID did not match the
device PARTID. This would indicate that the
wrong API was used. For example, using a
F2812 API on the F28335 device.

TMS320F2833x Flash API
July 9, 2008

37 of 41

14 STATUS_FAIL_API_SILICON_MISMATCH

At the start of each API function, the content of
a boot ROM location is checked to determine if
it is ok to execute the given API version on that
silicon. In the future, TI can change the
content of this boot ROM location if an API
becomes obsolete. This will prevent an old
API from executing on the new silicon.

The current API looks for the value 0xFFFE in
boot ROM location 0x3FFFB9.

If this error code occurs, verify that that the
proper API version is being used. Check the
TMS320C2000 web site at
http://www.ti.com/c2000.

Erase Specific Status Messages

20 STATUS_FAIL_NO_SECTOR_SPECIFIED
Erase had nothing to do because no valid
sectors were specified.

21 STATUS_FAIL_PRECONDITION
Erase operation failed because the pre-
condition (i.e. program all 0’s) operation failed.

22 STATUS_FAIL_ERASE

Erase operation failed because the sector
could not be erased with the maximum
allowed number of pulses.

23 STATUS_FAIL_COMPACT
Erase operation failed because the post-
conditioning (i.e. compaction) failed.

24 STATUS_FAIL_PRECOMPACT

Erase operation failed because the
pre- compaction portion failed. The
pre-compaction is applied to all
sectors on the device. The
FLASH_ST structure will return a
fail address corresponding to the
first sector fails this step.

Program Specific Status Messages

30 STATUS_FAIL_PROGRAM
Program operation failed because one or
more bits could not be programmed.

31 STATUS_FAIL_ZERO_BIT_ERROR

Program operation failed because one or
more bits were already programmed (read
back 0) that should have been erased (read
back 1).

If this happens it could be because the sector
was not erased before attempting to program.

Verify Specific Status Messages

40 STATUS_FAIL_VERIFY

The verify operation failed because one or
more bits did not match the reference data.

Try increasing the flash or OTP wait states.

TMS320F2833x Flash API
August 14, 2008

38 of 41

19. Code Size Requirements

The following code size information has been taken from map files generated by the linker when specific API
functions are called. The information shows the code size as well as the files within the API that were used by
the function call. The size does not include the global variables used for the CPU Scale factor or the callback
function pointer nor the code size to initialize those variables.

The code size shown is for the 2808 API. While it may vary slightly, it will be similar for the 2833x API.

The API is organized such that the linker will only include those functions that have been used in the
application. Thus, for example, if you do not call the toggle test function then the source code used by toggle
test is not included in the build.

Some top level functions share low level code with other functions. For example, the erase function shares
code with the program function. For this reason, the code size required by both functions is less then the sum of
the code size for the individual functions.

Erase only:

 length input sections

---------- ----------------

 00000014 Flash2808_API_V302.lib : Flash28_Erase.obj (.econst)

 000000a2 : Flash28_Erase.obj (.text)

 0000005b : Flash28_EraseSector.obj (.text)

 00000024 : Flash28_Init.obj (.text)

 00000084 : Flash28_Internals.obj (.text)

 00000014 : Flash28_Utils.obj (.text)

 00000033 : Flash28_ClearSector.obj (.text)

 00000054 : Flash28_CompactSector.obj (.tex

 0000000d : Flash28_Delay.obj (.text)

 0000009a : Flash28_Erase_Pulse.obj (.text)

 00000041 : Flash28_ClearLoop.obj (.text)

 0000007d : Flash28_Compact_Pulse.obj (.tex

 00000007 : Flash28_DisInt.obj (.text)

 0000007f : Flash28_Prog_Pulse.obj (.text)

 Total: 0000043f

Program only:

 length input sections

---------- ----------------

 000000a9 Flash2808_API_V302.lib : Flash28_Prog.obj (.text)

 0000007f : Flash28_Prog_Pulse.obj (.text)

 00000014 : Flash28_Utils.obj (.text)

 0000000d : Flash28_Delay.obj (.text)

 00000007 : Flash28_DisInt.obj (.text)

 00000024 : Flash28_Init.obj (.text)

 00000084 : Flash28_Internals.obj (.text)

 Total: 000001f8

TMS320F2833x Flash API
July 9, 2008

39 of 41

Erase + Program:

 length input sections

---------- ----------------

 00000014 Flash2808_API_V302.lib : Flash28_Erase.obj (.econst)

 000000a2 : Flash28_Erase.obj (.text)

 0000005b : Flash28_EraseSector.obj (.text)

 00000024 : Flash28_Init.obj (.text)

 00000084 : Flash28_Internals.obj (.text)

 000000a9 : Flash28_Prog.obj (.text)

 0000007f : Flash28_Prog_Pulse.obj (.text)

 00000014 : Flash28_Utils.obj (.text)

 00000033 : Flash28_ClearSector.obj (.text)

 00000054 : Flash28_CompactSector.obj (.text)

 0000000d : Flash28_Delay.obj (.text)

 00000007 : Flash28_DisInt.obj (.text)

 0000009a : Flash28_Erase_Pulse.obj (.text)

 00000041 : Flash28_ClearLoop.obj (.text)

 0000007d : Flash28_Compact_Pulse.obj (.text)

 Total: 000004e8

Verify Only:

 length input sections

---------- ----------------

 00000033 Flash2808_API_V302.lib : Flash28_Verify.obj (.text)

 00000024 : Flash28_Init.obj (.text)

 00000014 : Flash28_Utils.obj (.text)

 Total: 0000006b

Erase + Program + Verify:

 length input sections

---------- ----------------

 00000014 Flash2808_API_V302.lib : Flash28_Erase.obj (.econst)

 000000a2 : Flash28_Erase.obj (.text)

 0000005b : Flash28_EraseSector.obj (.text)

 00000024 : Flash28_Init.obj (.text)

 00000084 : Flash28_Internals.obj (.text)

 000000a9 : Flash28_Prog.obj (.text)

 0000007f : Flash28_Prog_Pulse.obj (.text)

 00000014 : Flash28_Utils.obj (.text)

 00000033 : Flash28_Verify.obj (.text)

 00000033 : Flash28_ClearSector.obj (.text)

 00000054 : Flash28_CompactSector.obj (.text)

 0000000d : Flash28_Delay.obj (.text)

 00000007 : Flash28_DisInt.obj (.text)

 0000009a : Flash28_Erase_Pulse.obj (.text)

 00000041 : Flash28_ClearLoop.obj (.text)

 0000007d : Flash28_Compact_Pulse.obj (.text)

 Total: 0000051b

TMS320F2833x Flash API
August 14, 2008

40 of 41

Toggle Test Only:

 length input sections

 ---------- ----------------

 00000014 Flash2808_API_V302.lib : Flash28_ToggleTest.obj (.text)

 00000014 : Flash28_Utils.obj (.text)

 0000000d : Flash28_Delay.obj (.text)

 00000007 : Flash28_DisInt.obj (.text)

 Total: 0000003c

Depletion Recovery Only:

 length input sections

 ---------- ----------------

 00000010 Flash2808_API_V302.lib : Flash28_DepRecover.obj (.econst)

 0000002a : Flash28_DepRecover.obj (.text)

 00000024 : Flash28_Init.obj (.text)

 00000014 : Flash28_Utils.obj (.text)

 00000047 : Flash28_DepCompactSector.obj (.text)

 00000084 : Flash28_Internals.obj (.text)

 0000007d : Flash28_Compact_Pulse.obj (.text)

 0000000d : Flash28_Delay.obj (.text)

 00000007 : Flash28_DisInt.obj (.text)

 Total: 000001ce

API Version Hex Only:

 length input sections

---------- ----------------

 00000003 Flash2808_API_V302.lib : Flash28_Version_Hex.obj (.text)

 Total: 00000003

API Version Float Only:

 length input sections

---------- ----------------

 00000005 Flash2808_API_V302.lib : Flash28_Version.obj (.text)

 Total: 00000005

TMS320F2833x Flash API
July 9, 2008

41 of 41

20. F28335, F28334, F28332 API Revision Information

V1.01: Initial Release
V2.00: Added support for F28334 and F28332.

Changed PARTID check to conform to silicon rev A changes. Mandatory
update for revision A silicon.
Backwards compatible for revision 0 silicon.

V2.10: Corrected Flash28334_Erase and Flash28332_Erase functions.

21. Files included with the API

Each device has an API library. Include the proper library for your device in your project.

Since the API function call definitions are compatible between the F2833x devices, the include files and
documentation is the same for all of the F2833x devices. They have been duplicated under both sub-
directories for convenience and clarity.

In a typical install, <base> = c:\tidcs\c28\Flash28_API

TMS320F28335

API Library:

<>\Flash28335_API_V210\lib\Flash28335_API_V210.lib

API Include Files:

<>\Flash28335_API_V210\include\Flash2833x_API_Library.h

<>\Flash28335_API_V210\include\Flash2833x_API_Config.h
Documentation:

<>\Flash28335_API_V210\doc

Example:

<>\Flash28335_API_V210\example

TMS320F28334

API Library:

<>\Flash28334_API_V210\lib\Flash28334_API_V210.lib

API Include Files:

<>\Flash28334_API_V210\include\Flash2833x_API_Library.h

<>\Flash28334_API_V210\include\Flash2833x_API_Config.h
Documentation:

<>\Flash28334_API_V210\doc

Example:

<>\Flash28334_API_V210\example

TMS320F28332

API Library:

<>\Flash28332_API_V210\lib\Flash28332_API_V210.lib

API Include Files:

<>\Flash28332_API_V210\include\Flash2833x_API_Library.h

<>\Flash28332_API_V210\include\Flash2833x_API_Config.h
Documentation:

<>\Flash28332_API_V210\doc

Example:

<>\Flash28332_API_V210\example

