
Rev 1.3 23 Jan 2002
1

Embedding Flash Programming into TMS320LF240x Applications
C2000 Applications Group

Texas Instruments Incorporated

ABSTRACT

Embedded Flash programming  offers several  opportunities to the system designer by

allowing customization of the functionality of the device in system. This can enable field

reprogramming for firmware updates or calibration data storage. To do this flash

programming must be integrated into the end application. To accelerate this process TI

has implemented an API based interface to the flash programming algorithms. This

document describes these algorithms and how to integrate these into your TMS320LF240x

Application.



2 Embedding Flash Programming into TMS320LF240x Applications

Contents

1 Introduction .................................................................................................................................. 3
1.1 Why embed flash programming into the application ?............................................................. 3
1.2 Flash API ................................................................................................................................ 3

2 Working with the Flash API .........................................................................................................4
2.1 Clock Rate Configuration ........................................................................................................ 4
2.2 Run Time Considerations ....................................................................................................... 5
2.3 Programming Voltage Supply ................................................................................................. 5
2.4 Linker Command File Sections ............................................................................................... 5
2.5 Overlaid linker command file allocation................................................................................... 9
2.6 Device Type setting ................................................................................................................ 9

3 API Reference ...............................................................................................................................9
3.1 List of Functions implemented by the API ............................................................................... 9
3.2 CLEAR ................................................................................................................................. 11
3.3 ERASE ................................................................................................................................. 16
3.4 PROGRAM........................................................................................................................... 21
3.5 COPY ................................................................................................................................... 26

Figures

Figure 1. Flash API Organization ........................................................................................................... 4
Figure 2. Linker Command File Example ............................................................................................... 7
Figure 3. Overlaying algorithms to conserve RAM .................................................................................8



Embedding Flash Programming into TMS320LF240x Applications 3

1 Introduction

On the TMS320LF240x DSP Controllers, there is on-chip flash memory. This flash memory
contains program code for the DSP controller. Reprogramming the flash memory in the system
can offer several opportunities. TI supplies implementations of programming algorithms to
program this flash memory. This document examines several aspects of working with the
algorithms.

1.1 Why embed flash programming into the application ?

Incorporating the a DSP with an embedded flash offers several advantages. Some of these are:

1. It is possible to customize the functionality of the device in system. A single controller
board can serve multiple servo-axis designs. The controller can be customized in the
system to suit the system it is installed in. This can minimize inventory carried for the
controller boards, offering significant flexibility

2. Firmware can be field up-dated for better performance or for added features. This can
also be used to eliminate a factory recall for software upgrades.

3. Calibration data may be stored in the embedded flash during installation or factory testing
to account for the variation in the system parameters. In several applications the controller
can run calibration routines during installation, and then store the calibration data into the
embedded flash memory.

To accelerate the integration of the flash programming algorithms into the system application, TI
has implemented algorithms with an easy to use API.

1.2 Flash API

The Flash API is a simple-to-use interface to the flash programming algorithms. It consists of well
documented function calls, that the client application calls to perform flash specific operations. In
a layered view of the system, the flash API can be seen as a layer which abstracts complex
functionality. The flash API provides a simple way to use the flash memory core, registers and
algorithm functions



4 Embedding Flash Programming into TMS320LF240x Applications

 Figure 1.  Flash API Organization

This helps abstraction of the flash memory details from the application, and leads to better
organization of the system. TI provides flash algorithms for performing the operations such as
Clear, Erase, and Program on the LF240x Controllers. Using TI supplied algorithms allows you to
focus on your application, and frees up developer time to concentrate on your value proposition.

The flash API has been written to be easy to integrate into client applications. This means that
you are freed up from managing complex timing requirements and verification levels, to focus on
getting your application done faster.

2 Working with the Flash API

Integration of the Flash Programming into the system requires that the system designer
implement operations so that several key requirements are satisfied. These are discussed in this
section, together with implementation aspects.

2.1 Clock Rate Configuration

The algorithms must be configured for the CPU clock rate at which they will run. The flash
programming algorithms contain several delay parameters, implemented as software delays.
Timing is VITAL, and to ensure this the flash algorithms must be run at the correct speed.

To configure the flash programming algorithms locate the ‘var.h’ file in the ‘include’ sub-directory.

Step 1 is used only by the JTAG based front-end programs to set the PLL pre-scalar. This does
not actually get used in the embedded algorithms. However the CPU clock speed combination,
so that the final clock speed at which your system runs must be determined from the (known)
input clock speed and the PLL multiplier put in by the system boot function.

Flash APIFlash API

Flash Algorithms

Flash Control Registers

Flash Memory Core

Application



Embedding Flash Programming into TMS320LF240x Applications 5

Step 2: This file contains the ‘include’ statement used to choose which timing file is used to
compile the flash algorithms. Uncomment the include line to include the timing file for the speed
at which the target system is to be run.

Step 3: If the timing file for the actual speed the target system is to be run is not available, then
such a file can be generated by using the excel spreadsheet in the ‘include’ sub-directory.

Step 4: This is completed when compiling your main project.

See Var.h for all the details.

2.2 Run Time Considerations

The On the LF240x DSP controllers, there is only one flash core. The flash core architecture
imposes the restriction that  the flash core can perform only one operation at a time. So when
programming the flash, code cannot execute from the flash. Consequently all algorithm code
must be run from RAM. If any communication routines run in between flash programming
operations, they must be copied to run from RAM as well.

To this end the COPY_XXX  functions are used to copy the corresponding algorithm into RAM at
runtime. The runtime addresses are determined during linking and the linker command file
sections are discussed in Section 2.4.

2.3 Programming Voltage Supply

During the flash programming process, pulses are applied to the flash array with several different
voltages. These voltages are generated by an on-chip charge pump. This charge pump is
powered from the Vccp pin, and 5V must be connected to this pin during the flash programming
process. This supply should source at least the current as per the device datasheet. There
should NOT be a resistor in this line.

2.4 Linker Command File Sections

The flash algorithms contain relocation sensitive code. This is placed by the algos into the
CSPL_text, ESPL_text, and PSPL_text sections (for the clear, erase and program respectively).

The SPL_text section in the linker command file example shown in the Figure 2, shows how
these three sections are concatenated  into a single SPL_text section. This must be done exactly
as shown, since all the three sections are address sensitive.

The SPL_text section has separately defined run and load addresses. These allow the COPY
functions (discussed in section TBD) to copy the flash algos to RAM at runtime. (Recall that this
is a constraint from the flash architecture – section 2.2.  The rest of the code from the clear,
erase and program algorithms is assembled into the  CLR_text, ERA_text and PGM_text
sections. This is concatenated  into a single ALG_text section. This is run from RAM as well,
similar to the SPL_text section.



6 Embedding Flash Programming into TMS320LF240x Applications

The KER_text section is wrapped between two dummy sections (KER_strt and KER_end). This
allows copying the KER_text section into RAM at runtime without requiring any labels to be
defined within the KER_text section. Any and all code placed into the KER_text section by user
functions will be copied to RAM at runtime.

The linker command file shown in Figure 2 does not overlay these algorithms in RAM. This
allows the ENTIRE flash array to be cleared and erased, without requiring a sector to remain un-
modified. To reduce the RAM usage, the algorithms can be overlaid in memory, and this is
discussed in section 2.5. It may be noted that this RAM is used only during programming, that is,
it is free for other usage at runtime, when the flash is not being programmed. However if it
contains data, this data must be expendable, for it will be trashed with the flash algos are copied
into RAM.



Embedding Flash Programming into TMS320LF240x Applications 7

MEMORY
{
  PAGE 0 : VECS: origin = 0x0000, length = 0x0040
  PAGE 0 : PROG: origin = 0x0044, length = 0x7fbc
  PAGE 0 : ABSRAM:   origin = 0x8000, length = 0x0040
  PAGE 0 : SARAM: origin = 0x8040, length = 0x07c0
  PAGE 1 : BLKB2: origin = 0x0060, length = 0x0020
  PAGE 1 : BLKB0B1: origin = 0x0200, length = 0x0200
}
SECTIONS
{
VECTORS : {} > VECS PAGE 0

    .text   : {} > PROG PAGE 0
    .cinit  : {} > PROG PAGE 0

/* Allocate the relocation sensitive portions in SARAM at proper addresses. The
relocation sensitive section should always be sent to a RAM block starting on XXX0
   for the relocation mechanism to properly locate the code with relocation
sensitivities. */

    SPL_text: load = PROG PAGE 0, run= ABSRAM PAGE 0
    {
    . += 7 ;
    ClearAlgoRunSpl   = . ;
    *(CSPL_text)
    . += 6 ;
    ProgramAlgoRunSpl = . ;
    *(PSPL_text)
    . += 6 ;
    EraseAlgoRunSpl   = . ;
    *(ESPL_text)
    }

/* Next deal with the rest of the algorithm code */
    ALG_text : load = PROG PAGE 0, run = SARAM PAGE 0
    {
    ClearAlgoRunMain = .   ;
    *(CLR_text)
    EraseAlgoRunMain = .   ;
    *(ERA_text)
    ProgramAlgoRunMain = . ;
    *(PGM_text)
    }
  KER_comp : load = PROG PAGE 0, run = SARAM PAGE 0
    {
 KernelRun = .;

*(KER_strt)
*(KER_text)
*(KER_end)

    }
    .flshvar  : {} > BLKB2  PAGE 1
}

 Figure 2.  Linker Command File Example



8 Embedding Flash Programming into TMS320LF240x Applications

MEMORY
{
  PAGE 0 : VECS: origin = 0x0000, length = 0x0040
  PAGE 0 : PROG: origin = 0x0040, length = 0x7fc0
  PAGE 0 : ABSRAM:  origin = 0x8000, length = 0x0040
  PAGE 0 : SARAM: origin = 0x8040, length = 0x07c0
  PAGE 1 : BLKB2: origin = 0x0060, length = 0x0020
  PAGE 1 : BLKB0B1: origin = 0x0200, length = 0x0200
}
SECTIONS
{       VECTORS : {} > VECS PAGE 0
 .text   : {} > PROG PAGE 0
    .cinit  : {} > PROG PAGE 0
/* Allocate the relocation sensitive portions in SARAM at proper addresses. The
relocation sensitive section should always be sent to a RAM block starting on XXX0
   for the relocation mechanism to properly locate the code with relocation
sensitivities. */
UNION   run = ABSRAM PAGE 0
{     CSPL_tex: load = PROG PAGE 0

    {
    .+= 7;
    ClearAlgoRunSpl = . ;
    *(CSPL_text)
    }
    PSPL_tex:  load = PROG PAGE 0

    {
    .+= 7;
    ProgramAlgoRunSpl = . ;
    *(PSPL_text)
    }
    ESPL_tex:  load = PROG PAGE 0

    {
    .+= 7;
    EraseAlgoRunSpl = . ;
    *(ESPL_text)
    }
}

UNION   run = SARAM PAGE 0
{    CLR_text: load = PROG PAGE 0

    {
    ClearAlgoRunMain = .   ;
    }
       ERA_text: load = PROG PAGE 0

        {
        EraseAlgoRunMain = .   ;
        }
        PGM_text load = PROG PAGE 0
        {
        ProgramAlgoRunMain = . ;
        }
    }
  KER_comp : load = PROG PAGE 0, run = SARAM PAGE 0
    { KernelRun = .;

*(KER_strt)
*(KER_text)
*(KER_end)

    }
    .flshvar  : {} > BLKB2  PAGE 1
}

 Figure 3.  Overlaying algorithms to conserve RAM



Embedding Flash Programming into TMS320LF240x Applications 9

2.5 Overlaid linker command file allocation

In embedded systems with memory constraints it is desirable to reduce RAM consumption. To do
this in certain cases the algorithms may be overlaid in memory. In some systems it may be
possible to leave a sector unmodified, and this can be used to contain the algorithms. Or, the
algos may be streamed in over the serial port, with the algos contained on the host. To overlay
the algos, the UNION statement is used, and this is shown in Figure 3.

2.6 Device Type setting

The Flash API version 1.3 onwards supports the LF2401A DSP Controller as well as the other
LF240x controllers. Since the LF2401 has only 8k words of flash, it needs separate handling.
Accordingly a configuration option has been made available in the file VAR.H. This allows the
API to be targeted to the LF2401, or the LF240x controllers.

To set this up edit the VAR.H option section:

1. Determine the device to be programmed.

Device number Device type setting

'LF2401A LF2401A

'LF2407 LF2407

'LF2407A LF2407

'LF2406 LF2407

'LF2406A LF2407

'LF2402 LF2407

'LF2402A LF2407

'LF2403A LF2407

2. Set the device type setting. (Change ONLY the DEV_TYPE setting line.)

DEV_TYPE    .set    LF2401A

3 API Reference

This section describes the API interface to the flash programming algorithms and utility functions.

3.1 List of Functions implemented by the API

Here is a list of the functions in the ASM interface:

Group A: Flash Operations



10 Embedding Flash Programming into TMS320LF240x Applications

1. CLEAR_FLASH

2. ERASE_FLASH

3. PROGRAM_FLASH

Group B: Utility Functions

4. COPY_CLEAR_ALGO

5. COPY_ERASE_ALGO

6. COPY_PROGRAM_ALGO

7. COPY_KERNEL

Group A: Flash Operations

1. void clearFlash(FlashAlgoVars *);

2. void eraseFlash(FlashAlgoVars *);

3. void programFlash(FlashAlgoVars *);

Group B: Utility Functions

4. void copyClearAlgo(void);

5. void copyEraseAlgo(void);

6. void copyProgramAlgo(void);

7. void copyKernel(void);



Embedding Flash Programming into TMS320LF240x Applications 11

3.2 CLEAR

Description

The Clear functions pre-conditions the flash sector(s) in preparation for the erase.

Availability

This module is available in two interface formats:

The direct mode assembly-only interface (Direct ASM)
The C-callable interface version.

Module Properties

Type: Target Dependent, Application Dependent
Target Device/s: LF2402, LF2406, LF2407
File Name(s): clr_alg.asm, var.h, var.asm, rundefs.h, timings.xx.
C-callable Version File Name(s):  Cflash.h

Item Asm only C callable ASM Comments
Code size 265 words 265 words 234 words when configured as

LF2401A (See section 2.6 for
more information on how to
configure)

Data RAM 24 words 24 words
XDAIS ready No No
XDAIS component No No Hardware drivers.
Multiple Instances No No

(Note: The Clear, Erase, Program and Copy share the same block of 24 words of data RAM – they use it in turns)

ClearSECTOR_CMD ALGO_STATUS



12 Embedding Flash Programming into TMS320LF240x Applications

Direct ASM Format: Interface Description

Module  Terminal Variables

Name Description Format Range
Inputs
SECTOR_CMD Describes which sectors are to be cleared. Bit 0 corresponds

to sector 0, bit 1 to sector 1 etc. If the Bit in SECTOR_CMD
is set then the Sector is CLEARED. if the bit is a 0 then the
sector is left alone.

integer 0x0000 to
0x000F.

Outputs

ALGO_STATUS Returns an error code reflecting the operation status.

0x0000: Operation was run to completion.

0x0001: The algorithm failed to clear  the flash despite
applying maximum number of pulses allowable.

0x000a: The algo was called with a zero sector mask, i.e. the
algo was asked to clear ‘no sectors’.

integer

Module Usage / Calling Convention

Variable Declaration:
In the system file include the following statements:

.include var.h

Memory map:
All variables are mapped to a named section ‘.flshvar’
Code is mapped into the CLR_text and CSPL_text sections.

Special Variables

flashAlgoVars External structure instance.

.globl    flashAlgoVars

flshvar     .struct
ADDR        .int
PAD         .int
READ        .int



Embedding Flash Programming into TMS320LF240x Applications 13

DATA        .int
PAD1        .int
PLS_CNT     .int
LASTVER     .int
FL_SECST    .int
FL_SECEND   .int
FL_CMD      .int
ERASESEC    .int
DATA_PTR    .int
FAIL_CMD    .int
SECTOR_KEY  .int
SECTOR_CMD  .int
ALGO_STATUS .int
flshvar_len .endstruct

flashAlgoVars   .tag    flshvar

The flashAlgoVars is assigned the characteristics of flshvar structure.

Example code:

LDP   #flashAlgoVars.SECTOR_CMD       ;Point DP to flash vars.
SPLK  #0fh,flashAlgoVars.SECTOR_CMD   ;Pass sector command.
CALL CLEAR_FLASH               ;Call the clear routine.



14 Embedding Flash Programming into TMS320LF240x Applications

C / C-callable ASM Format: Interface Description

Module Terminal Variables

Module  Terminal Variables

Name Description Format Range
Inputs
SECTOR_CMD Describes which sectors are to be cleared. Bit 0 corresponds

to sector 0, bit 1 to sector 1 etc. If the Bit in SECTOR_CMD
is set then the Sector is CLEARED. if the bit is a 0 then the
sector is left alone.

integer 0x0000 to
0x000F.

Outputs

ALGO_STATUS Returns an error code reflecting the operation status.

0x0000: Operation was run to completion.

0x0001: The algorithm failed to clear  the flash despite
applying maximum number of pulses allowable.

0x000a: The algo was called with a zero sector mask, i.e. the
algo was asked to clear ‘no sectors’.

integer

Special Constants and Datatypes

FlashAlgoVarsData type for interfacing to the flash algorithm variables

flashAlgoVars External structure instance.

The template for FlashAlgoVars is as below:

typedef  struct FlashAlgoVars {
int ADDR;
int PAD;
int READ;
int DATA;



Embedding Flash Programming into TMS320LF240x Applications 15

int PAD1;
int PLS_CNT;
int LASTVER;
int FL_SECST;
int FL_SECEND;
int FL_CMD;
int ERASESEC;
int DATA_PTR;
int FAIL_CMD;
int SECTOR_KEY;
int SECTOR_CMD;
int ALGO_STATUS;
} FlashAlgoVars;

Module Functions: Clear
void extern clearFlash(FlashAlgoVars *);

Module Usage

Structure Reference
extern FlashAlgoVars flashAlgoVars;
Calling the Clear function
The following example calls the clear algo:

/* Setup the sector permissions */
flashAlgoVars.SECTOR_CMD=(0xf);

/* Call the clear function */
clearFlash(&flashAlgoVars);

if(0 != flashAlgoVars.ALGO_STATUS)
{

/* Handle failure */
}



16 Embedding Flash Programming into TMS320LF240x Applications

3.3 ERASE

Description

Erases the flash sector(s).

Availability

This module is available in two interface formats:

The direct mode assembly-only interface (Direct ASM)
The C-callable interface version.

Module Properties

Type: Target Dependent, Application Dependent
Target Device/s: LF2402, LF2406, LF2407
File Name(s): era_alg.asm, var.h, var.asm, rundefs.h, timings.xx.
C-callable Version File Name(s):  Cflash.h

Item Asm only C callable ASM Comments
Code size 332 words 332 words 306 words when configured as

LF2401A (See section 2.6 for
more information on how to
configure)

Data RAM 24 words 24 words
XDAIS ready No No
XDAIS component No No Hardware drivers.
Multiple Instances No No

(Note: The Clear, Erase, Program and Copy share the same block of 24 words of data RAM – they use it in turns)

EraseSECTOR_CMD ALGO_STATUS



Embedding Flash Programming into TMS320LF240x Applications 17

Direct ASM Format: Interface Description

Module  Terminal Variables

Name Description Format Range
Inputs
SECTOR_CMD Describes which sectors are to be erased. Bit 0 corresponds

to sector 0, bit 1 to sector 1 etc. If the Bit in SECTOR_CMD
is set then the Sector is ERASED. If the bit is a 0 then the
sector is left alone.

integer 0x0000 to
0x000F.

Outputs
ALGO_STATUS Returns an error code reflecting the operation status.

0x0000: Operation was run to completion.

0x0002: The algorithm failed to erase the flash despite
applying maximum number of pulses allowable.

0x000a: The algo was called with a zero sector mask, i.e. the
algo was asked to erase ‘no sectors’.

integer

Module Usage / Calling Convention

Variable Declaration:
In the system file include the following statements:

.include var.h

Memory map:
All variables are mapped to a named section ‘.flshvar’
Code is mapped into the ERA_text and ESPL_text sections.

Special Variables

flashAlgoVars External structure instance.

.globl    flashAlgoVars

flshvar     .struct
ADDR        .int
PAD         .int
READ        .int
DATA        .int
PAD1        .int
PLS_CNT     .int



18 Embedding Flash Programming into TMS320LF240x Applications

LASTVER     .int
FL_SECST    .int
FL_SECEND   .int
FL_CMD      .int
ERASESEC    .int
DATA_PTR    .int
FAIL_CMD    .int
SECTOR_KEY  .int
SECTOR_CMD  .int
ALGO_STATUS .int
flshvar_len .endstruct

flashAlgoVars   .tag    flshvar

The flashAlgoVars is assigned the characteristics of .flshvar structure.

Example code:

LDP   #flashAlgoVars.SECTOR_CMD       ;Point DP to flash vars.
SPLK  #0fh,flashAlgoVars.SECTOR_CMD   ;Pass sector command.
CALL ERASE_FLASH               ;Call the erase routine.



Embedding Flash Programming into TMS320LF240x Applications 19

C / C-callable ASM Format: Interface Description

Module Terminal Variables

Module  Terminal Variables

Name Description Format Range
Inputs
SECTOR_CMD Describes which sectors are to be erased. Bit 0 corresponds

to sector 0, bit 1 to sector 1 etc. If the Bit in SECTOR_CMD
is set then the Sector is ERASED. If the bit is a 0 then the
sector is left alone.

integer 0x0000 to
0x000F.

Outputs
ALGO_STATUS Returns an error code reflecting the operation status.

0x0000: Operation was run to completion.

0x0002: The algorithm failed to erase the flash despite
applying maximum number of pulses allowable.

0x000a: The algo was called with a zero sector mask, i.e. the
algo was asked to erase ‘no sectors’.

integer

Special Constants and Datatypes

FlashAlgoVars Data type for interfacing to the flash algorithm variables

flashAlgoVars External structure instance.

The template for FlashAlgoVars is as below:

typedef  struct FlashAlgoVars {
int ADDR;
int PAD;
int READ;
int DATA;
int PAD1;
int PLS_CNT;
int LASTVER;



20 Embedding Flash Programming into TMS320LF240x Applications

int FL_SECST;
int FL_SECEND;
int FL_CMD;
int ERASESEC;
int DATA_PTR;
int FAIL_CMD;
int SECTOR_KEY;
int SECTOR_CMD;
int ALGO_STATUS;
} FlashAlgoVars;

Module Functions: Erase
void extern eraseFlash(FlashAlgoVars *);

Module Usage

Structure Reference
extern FlashAlgoVars flashAlgoVars;
Calling the Erase function
The following example calls the erase algo:

/* Setup the sector permissions */

flashAlgoVars.SECTOR_CMD=(0xf);

/* Call the erase function */
eraseFlash(&flashAlgoVars);

if(0 != flashAlgoVars.ALGO_STATUS)
{

/* Handle failure */
}



Embedding Flash Programming into TMS320LF240x Applications 21

3.4 PROGRAM

Description

Programs data into the flash sector(s).

Availability

This module is available with two interfaces:

The direct mode assembly-only interface (Direct ASM)
The C-callable interface version.

Module Properties

Type: Target Dependent, Application Dependent
Target Device/s: LF2402, LF2406, LF2407
File Name(s): pgm_alg.asm, var.h, var.asm, rundefs.h, timings.xx.
C-callable Version File Name(s):  Cflash.h

Item Asm only C callable ASM Comments
Code size 200 words 200 words
Data RAM 24 words 24 words
XDAIS ready No No
XDAIS component No No Hardware drivers.
Multiple Instances No No

(Note: The Clear, Erase, Program and Copy share the same block of 24 words of data RAM – they use it in turns)

Program
SECTOR_CMD ALGO_STATUS

DATA_PTR

NumWords
 (FL_SECEND)

ADDR



22 Embedding Flash Programming into TMS320LF240x Applications

Direct ASM Format: Interface Description

Module  Terminal Variables

Name Description Format Range
Inputs
DATA_PTR Address of the buffer which contains the data to be

programmed into the flash memory.
integer any valid data

memory area.
FL_SECEND Number of words to be programmed into the flash. integer 0<N<BufferSize
ADDR Address in Flash memory where the data is to be

programmed.
integer any valid flash

memory area.
SECTOR_CMD Describes which sectors contain the datum to be

programmed into the flash. The locations which are to be
programmed must already contain 1s (erased bits). Bit 0
corresponds to sector 0, bit 1 to sector 1 etc. If the Bit in
SECTOR_CMD is set then the words can be programmed
into the flash.

integer 0x0000 to
0x000F.

Outputs
ALGO_STATUS Returns an error code reflecting the operation status.

0x0000: Operation was run to completion.

0x0003: The algorithm failed to program the flash despite
applying maximum number of pulses allowable.

0x0004: The algorithm was asked to program a ‘1’ into one
or more bits already at a ‘0’.

integer

Module Usage / Calling Convention

Variable Declaration:
In the system file include the following statements:

.include var.h

Memory map:
All variables are mapped to a named section ‘.flshvar’
Code is mapped into the PGM_text and PSPL_text sections.

Special Variables

flashAlgoVars External structure instance.

.globl    flashAlgoVars



Embedding Flash Programming into TMS320LF240x Applications 23

flshvar     .struct
ADDR        .int
PAD         .int
READ        .int
DATA        .int
PAD1        .int
PLS_CNT     .int
LASTVER     .int
FL_SECST    .int
FL_SECEND   .int
FL_CMD      .int
ERASESEC    .int
DATA_PTR    .int
FAIL_CMD    .int
SECTOR_KEY  .int
SECTOR_CMD  .int
ALGO_STATUS .int
flshvar_len .endstruct

flashAlgoVars   .tag    flshvar

Thus the flashAlgoVars is instanced and assigned the characteristics of flshvar structure.

Example code:

LDP #flashAlgoVars.DATA_PTR       ;Point DP to flash vars.
SPLK #300h, flashAlgoVars.DATA_PTR ;Setup ptr to data buffer.
SPLK  #0eh,  flashAlgoVars.SECTOR_CMD ;Pass sector command.

 SPLK  #4,    flashAlgoVars.FL_SECEND   ;Number of words to pgm.
 SPLK  #1023h,flashAlgoVars.ADDR      ;Pass sector command.
 CALL  PROGRAM_FLASH                    ;Call the program routine.



24 Embedding Flash Programming into TMS320LF240x Applications

C / C-callable ASM Format: Interface Description

Module Terminal Variables

Module  Terminal Variables

Name Description Format Range
Inputs
DATA_PTR Address of the buffer which contains the data to be

programmed into the flash memory.
integer any valid data

memory area.
FL_SECEND Number of words to be programmed into the flash. integer 0<N<BufferSize
ADDR Address in Flash memory where the data is to be

programmed.
integer any valid flash

memory area.
SECTOR_CMD Describes which sectors contain the datum to be

programmed into the flash. The locations which are to be
programmed must already contain 1s (erased bits). Bit 0
corresponds to sector 0, bit 1 to sector 1 etc. If the Bit in
SECTOR_CMD is set then the words can be programmed
into the flash.

integer 0x0000 to
0x000F.

Outputs
ALGO_STATUS Returns an error code reflecting the operation status.

0x0000: Operation was run to completion.

0x0003: The algorithm failed to program the flash despite
applying maximum number of pulses allowable.

0x0004: The algorithm was asked to program a ‘1’ into one
or more bits already at a ‘0’.

integer

Special Constants and Datatypes

FlashAlgoVars Data type for interfacing to the flash algorithm variables

flashAlgoVars External structure instance.

The template for FlashAlgoVars is as below:

typedef  struct FlashAlgoVars {
int ADDR;
int PAD;
int READ;



Embedding Flash Programming into TMS320LF240x Applications 25

int DATA;
int PAD1;
int PLS_CNT;
int LASTVER;
int FL_SECST;
int FL_SECEND;
int FL_CMD;
int ERASESEC;
int DATA_PTR;
int FAIL_CMD;
int SECTOR_KEY;
int SECTOR_CMD;
int ALGO_STATUS;
} FlashAlgoVars;

Module Functions: Erase
void extern programFlash(FlashAlgoVars *);

Module Usage

Structure Reference
extern FlashAlgoVars flashAlgoVars;
Calling the Program function
The following example calls the program algo:

flashAlgoVars.SECTOR_CMD=(SECTOR1+SECTOR2+SECTOR3);

/* Setup ptr to data buffer. */
    flashAlgoVars.DATA_PTR=(int)(&bufferArray);

/* Number of words to program */

    flashAlgoVars.FL_SECEND=0x4;

/* Block address */

flashAlgoVars.ADDR=0x1023;

/* Call the program routine */

programFlash(&flashAlgoVars);



26 Embedding Flash Programming into TMS320LF240x Applications

3.5 COPY

Description

Copies the flash algorithms into RAM at runtime from their load addresses.
This module is implemented as four separate function calls. Each of these calls copies the clear, erase, program and kernel
routines into the RAM block specified by the ‘run’ addresses from the load address.

Availability

This module is available with two interfaces:

The direct mode assembly-only interface (Direct ASM)
The C-callable interface version.

Module Properties

Type: Target Dependent, Application Dependent
Target Device/s: LF2402, LF2406, LF2407
File Name(s): copy_alg.asm, var.h, var.asm, rundefs.h, link.cmd
C-callable Version File Name(s):  Cflash.h

Item Asm only C callable ASM Comments
Code size 159 words 159 words (includes the 2 words for

KER_strt and KER_end)
Data RAM 24  words 24 words
XDAIS ready No No
XDAIS component No No
Multiple Instances No No

(Note: The Clear, Erase, Program and Copy share the same block of 24 words of data RAM – they use it in turns)



Embedding Flash Programming into TMS320LF240x Applications 27

Direct ASM Format: Interface Description

Module Usage / Calling Convention

Variable Declaration:
In the system file include the following statements:

.include var.h

Memory map:

All variables are mapped to a named section ‘.flshvar’
Code is mapped into the .text section.

Special Variables

flashAlgoVars External structure instance.

;-----------------------------------------------------------
; Define a template to put the counter variables in the
; flashAlgoVars block. This is unused at the time the
; copy is invoked, so the flashAlgoVars are not
; subject to trashing (since they are not yet created).
;-----------------------------------------------------------

counterStruct  .struct

source      .int
dest        .int
counter     .int
temp        .int
counter_len     .endstruct
;------------------------------------------------------------
; Assign template to the flashAlgoVars block.
;------------------------------------------------------------
flashAlgoVars   .tag counterStruct

Thus the flashAlgoVars is instanced and assigned the characteristics of flshvar structure.
(The copy algo actually assigns the flashAlgoVars structure a private template and uses these locations as
variables to complete the copy)
Example code:

CALL    COPY_CLEAR_ALGO
      CALL    COPY_ERASE_ALGO
      CALL    COPY_PROGRAM_ALGO
      CALL    COPY_KERNEL



28 Embedding Flash Programming into TMS320LF240x Applications

C / C-callable ASM Format: Interface Description

Special Constants and Datatypes
(The copy algo actually assigns the flashAlgoVars structure a private template and uses these locations as variables to
complete the copy)

FlashAlgoVars Data type for interfacing to the flash algorithm variables

flashAlgoVars External structure instance.

The COPY module doesn’t define a C structure for the flashAlgoVars. It is entirely implemented in assembly and
the caller does not need to pass the copy routines any parameters. See the section on the linker command file for
details on how the copy routine finds the algos and run addresses.

Module Functions: Erase
void copyClearAlgo(void);
void copyEraseAlgo(void);
void copyProgramAlgo(void);
void copyKernel(void);

Module Usage
Calling the copy functions

The following example copies and calls the clear and erase algorithms:

copyClearAlgo();
flashAlgoVars.SECTOR_CMD=(SECTOR1+SECTOR2+SECTOR3);
clearFlash(&flashAlgoVars);

copyEraseAlgo();
flashAlgoVars.SECTOR_CMD=(SECTOR1+SECTOR2+SECTOR3);
eraseFlash(&flashAlgoVars);


